Zarya29.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощность излучения светодиода от тока

Светодиод на *** ватт

индикаторный светодиод

Самый распостраненный вид светодиодов, встречающийся повсеместно. Диаметр может колебаться от 2 до 20 мм. Слово «индикаторный» к нынешним, даже маломощным, светодиодам можно применить лишь достаточно условно — иные могут запросто засветить вам «зайчика» в глаз. Однако и само слово «индикатор» тоже со временем приняло уродливые формы. Например, мне пришлось заклеить изолентой индикатор сети нового музыкального центра — а то ночью можно читать под ним было, но вот заснуть — увы 🙂
Типовые параметры белого светодиода : ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт. Чтобы заменить один мощный 1 Вт светодиод, индикаторных понадобится 20-25 штук.
Также к маломощным относят некоторые типы светодиодов поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа : SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность примерно 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, около 0,2 Вт. На этом рассмотрение маломощных диодов можно прекратить — про них и так уже достаточно написано.

Мощный светодиод

светодиодный череп

В этой сфере царит изрядный винегрет. Попробуем условно разбить его на буквально две категории. Первая — это светодиоды производства американской фирмы CREE. Эта контора, безусловно, заслужила право быть отдельной категорией. Да, да, я знаю, что есть и суперпроизводитель Nichia — родоначальник белого светодиода, есть Osram и еще изрядное количество брэндов. Все они выпускают весьма неплохие мощные светодиоды, однако Кри — это Кри. Есть всякие вкусные шипучки, а есть Кока-Кола 😉 Обсуждать тут особенно нечего, светодиоды Cree весьма известны, также известны их характеристики. Поэтому мы их и не будем обсуждать. Отметим только, что светодиоды серий XRE, XPG, XML — это действительно светодиоды. MCE,MX, MPL — многокристальные сборки. К ним применимы основные принципы, которые мы рассмотрим чуть ниже.
Вторая категория — светодиоды noname, а именно — китайского производства. Ни для кого уже не секрет, что за последние пару лет китайцы сильно шагнули вперед в теме полупроводникового освещения. Поэтому покупка китайского мощного светодиода уже не такая лотерея, как два или три года назад. Наличие ebay.com и множества интернет-магазинов сделало китайские светодиоды весьма доступными.
При всех достоинствах «брэндов», у них есть некоторые существенные недостатки. Первый и главный — цена. Китайский светодиод в среднем в два-три раза дешевле своего заокеанского собрата. Второй — гораздо более широкий ассортимент. Особенно это касается светодиодов с различной длиной волны и цветовой температурой.
Третий недостаток, если его можно считать таковым — тип корпуса. Фирма Cree изначально ориентировалась на средних и крупных производителей светодиодной техники. Корпус светодиодов рассчитан на автоматический монтаж, что позволяет производить светодиодные светильники сотнями и тысячами. Но если вы еще не доросли до таких объемов или хотите использовать светодиоды в своих домашних поделках — увы, вас ждут сложности. Светодиоды Cree позволяют использовать ручной монтаж с большими оговорками, ни о какой производительности труда говорить не приходится, да и отвод тепла — серьезная проблема. Единственный выход — приобретение светодиодов на алюминиевой печатной плате, что отнюдь не удешевляет проект.
Львиная доля китайских светодиодов изготавливается в так называемом корпусе «эмиттер». Он несколько архаичен по нынешним временам, но при этом весьма удобен для ручного монтажа, эффективно отводит тепло и позволяет использовать множество типов оптики. Большая медная подложка прощает мелкие огрехи монтажа, линзу из поликарбоната легко очищать от загрязнений в отличии от «фирменной» силиконовой, большие вывода не создают сложностей при пайке.
Самый главный минус китайского светодиода по сравнению с брэндом — скудная техническая документация и отсутствие какого-либо стандарта. Ну и известное головотяпство китайцев. К примеру, у некоторых китайских производителей минус — это плюс. Не поленитесь проверить полярность светодиода, если заказываете первый раз. Давайте попробуем разобраться — можно ли на вид определить качество светодиода и его мощность.
Первое, и самое главное — правильно понимать, что такое мощность светодиода. Существует распостраненное заблуждение, что бывают одноваттные, трехваттные и т.д. светодиоды. Это не совсем так. У каждого светодиода существует понятие — максимальный рабочий ток. Вот он и определяет максимальную мощность светодиода. При этом его фактическая мощность зависит от тока, на который вы его включите. Для типового китайского «эмиттера» максимальный рабочий ток — 700 мА. Это означает, что его максимальная мощность равна произведению напряжения на ток, то есть примерно 3,7 В*0,7А=2,6 ватта. Фактически при продаже часто округляют до трех ватт. К тому же у недорогих кристаллов падение напряжения выше, и на токе 0,7А может достигать 4-4,5 вольт, а это уже полноценные три ватта. Чем меньше падение напряжения на токе 700 мА, тем экономичнее светодиод.

Читайте так же:
Управление освещением люстрой одним выключателем проводам

Для того, чтобы светодиод выдержал максимальный ток, необходимо соблюдение следующих условий :

1. Кристалл светодиода не должен содержать дефектов. Другими словами, очень важен производитель светодиодного чипа. 90% китайских производителей закупают чипы в Корее и на Тайване, иногда даже у Cree и других брэндов. Однако китайский светодиод с «брэндовым» чипом — сомнительное приобретение, так как цена ненамного ниже оригинала, а качество все-же не то. Последние два года китайцы начали выращивать свои кристаллы, но пока их качество не на уровне. Основная проблема — их трудно определить, остается уповать на честность поставщика.К сожалению, они получают все большее распостранение благодаря низкой цене.
2. Размер кристалла. Минимальный размер кристалла типового «эмиттера» 35×35 mil. Это чуть меньше 1х1 мм. Обычный размер — 38х38 либо 45х45 mil, то есть несколько больше 1х1 мм. (1 мил = 1/1000 дюйма = 0,0254 мм = 25,4 микрона)

Есть разновидность светодиодов с увеличенным кристаллом. Чем больше размер кристалла, тем выше световой поток, максимальный рабочий ток и максимальная мощность. Соответственно, визуально различить стандартный светодиод и светодиод с увеличенным кристаллом достаточно легко.

Подытоживая, можно сказать, что практически любой однокристальный качественный китайский эмиттер является трехваттным, что, несомненно, будет хорошей новостью для любителей поразгонять кристаллы 🙂 Некоторые экземпляры сносно себя чувствуют при токе до 1500 мА.

Ложку дегтя в эту новость добавляют следующие нюансы :
1. Вам сложно установить качество кристалла, если поставщик неизвестен. Как минимум желательно спросить продавца о том, чьи чипы стоят в светодиодах. Заминка с ответом косвенно может сказать, что продавец плохо разбирается в своем товаре.
2. Часто кристалл залит люминофором так, что его самого и не видно. Это не очень хороший признак. Если люминофора не жалеют — значит он дешевый. К тому же такая заливка может скрывать кристалл меньшего размера. Ко всему прочему, дешевый люминофор способен потемнеть или даже отслоиться на повышенном токе.
3. Неизвестно — из какого материала изготовлены проводники к кристаллу, и какова их толщина. Изначально они изготавливаются из золотой проволоки и должны быть рассчитаны на ток не менее 1000-1500 мА. На практике для удешевления светодиода применяют проволоку меньшей толщины либо из позолоченного серебра, а то и вовсе из меди или других металлов.
4. Неизвестно качество приклейки кристалла к теплоотводящему основанию. Если ток 300-350 мА терпим для большинства «эмиттеров», то 700 мА предъявляют непропорционально повышенные требования к качеству изготовления. Иными словами, при увеличении тока в два раза, требования к качеству приклейки и пайки кристалла к выводам возрастают в четыре раза.
5. Нельзя забывать, что с увеличением рабочего тока падает общая эффективность светодиода. Если на токе 350 мА он, условно говоря, выдаст 100 люмен, то на токе 700 мА — только 160-170, но никак не 200 люмен. И чем выше ток, тем ниже эффективность.

Также на стоимость светодиода влияет биновка по цветовой температуре и отбор по падению напряжения. Если цветовая температура мало влияет на надежность, то большой разброс в падении напряжения при параллельном соединении способен вызвать серьезную разницу в свечении и неравномерность распределения тока. Отсутствие этих операций в технологической цепочке при изготовлении светодиода удешевляет его, но о стабильности характеристик готового изделия говорить не приходится.

Другими словами, использовать ток выше 350 мА при отсутствии внятной информации о происхождении, либо гарантий поставщика, не стоит. Если уж очень хочется — обеспечьте избыточный теплоотвод и проконтролируйте температуру. Все-таки почти в два раза больше света за те же деньги — стоит рискнуть 🙂 На токе 700 мА светодиоду потребуется около 70-80 кв.см площади радиатора. Контролировать температуру лучше всего термопарой на выводе работающего светодиода, подвесив этот вывод в воздухе. Это если есть такая возможность. Если нет — измерять максимально близко к подложке светодиода со стороны радиатора. Температуру выше 70 градусов на радиаторе можно считать критической. На выводе может быть до 75 С. Однако оптимум — до 60 С.

На каком же токе оптимально использовать светодиод ? Это зависит от поставленной задачи. Если задача — создать максимально экономичный источник света — лучше обратить внимание на высокоэффективные светодиоды, выдающие более 120-130 Лм на ватт. При этом эксплуатировать их на токе выше 300 мА не стоит. В итоге вы получите, во-первых, максимум энергоэффективности, во-вторых, светодиод будет вечным при достаточном теплоотводе. Да, такие светодиоды ощутимо дороже своих собратьев с производительностью 100 Лм/ватт. Но при этом в долгосрочной перспективе более дорогие диоды окупятся быстрее. Если же задача максимальной экономии не стоит, вполне можно обойтись 35-38 mil чипами, разогнанными до 600-700 миллиампер. С точки зрения себестоимости готового изделия это ощутимо выгоднее использования высокоэффективных светодиодов.

Читайте так же:
Ток кабель катушка розетка одним словом

Напоследок коснусь разницы между мощными однокристальными светодиодами и сборками. Основной недостаток сборок — бОльшая уязвимость по сравнению с однокристаллками. К примеру, светодиод Cree MX3 содержит три кристалла, соединенных параллельно. Как известно, светодиодные кристаллы имеют некоторый технологический разброс. При параллельном подключении один из кристаллов практически всегда будет пропускать через себя бОльший ток и, как следствие, нагрузка на него будет выше. В процессе эксплуатации выход из строя одного кристалла повлечет за собой увеличение тока через оставшиеся два. Эта же особенность делает светодиод более критичным к кратковременным перегрузкам. Следующий минус — точки пайки. Как показала практика, очень часто светодиод выходит из строя вследствие потери контакта с кристаллом из-за многократных циклов нагрева-остывания. Соответственно, если мощный светодиод содержит три кристалла — вероятность выхода из строя по этой причине возрастает в три раза. Тем не менее, разница в цене зачастую компенсирует этот недостаток. Также к преимуществам можно отнести уменьшение «точечного эффекта».
Хотелось бы отметить, что китайские производители часто хитрят при продаже мощных светодиодных сборок (матриц). Первая из основных хитростей — заявление более высокого рабочего тока. К примеру, если матрица содержит 9 кристаллов 38 mil, включенных по схеме три последовательно-три параллельно, типовым считается ток 300 мА*3=900 мА, а мощность матрицы, соответственно, около 10 Вт. Предприимчивый производитель (продавец) заявляет ток 600*3=1800 мА и вуаля — матрица становится 20-ваттной ! И формально вроде никаких проблем — 35-38 mil кристалл, по идее, выдерживает такой ток без особых последствий. Но 9 таких кристаллов, собранных на единой подложке, могут дать непредсказуемый результат и по нагреву, и по деградации (необратимому уменьшению светового потока в процессе эксплуатации).
Вторая хитрость — установка в матрицу кристаллов менее 35-38 mil. Это делает матрицу дешевле, но отнюдь не лучше.
Ну и третья хитрость — совмещение двух предыдущих. Дает фантастические результаты при фантастически низкой цене 🙂
Таким образом, при покупке следует убедиться в том, что вам не подсовывают плоды деятельности таких хитрых предпринимателей.

Стоимость китайских светодиодов вполне располагает к попыткам выжать из них больше, чем заявлено. Если вы решились на этот шаг и разогнали свои «светики» — не поленитесь проконтролировать их визуально после пары недель работы. Если они выглядят также, как и при монтаже — есть надежда, что они себя хорошо чувствуют. Если же вокруг кристалла образовалось темное пятно — значит, тепло отводится от светодиода недостаточно эффективно. Думайте над конструкцией радиатора.

Электронный учебно-методический комплекс по ТМ и О ЦВОСП

СИД представляет собой полупроводниковый прибор с р- n переходом, протекание электрического тока через который вызывает интенсивное спонтанное излучение. Известно много конструкций СИД, однако наибольшее применение получили поверхностные и торцевые СИД.

Спонтанное излучение обладает низкой монохроматичностью. Его называют некогерентным светом.(СИД)

Когерентными источниками называют такие источники, которые излучают синфазные оптические волны. В основе их работы лежит спонтанное излучение полупроводника охваченное объемным резонатором (например, Фабри-Перо).

В поверхностном светодиоде волоконный световод присоединяется к поверхности излучения через специальную выемку в полупроводниковой подложке. Такой способ стыковки СИД и стекловолокна обусловлен необходимостью ввода максимальной мощности спонтанного излучения в световод. (Рис.1.2)

Рисунок 1.2. Конструкция поверхностного светодиода

В конструкции торцевого светодиода предусмотрен вывод оптической мощности излучения через один из торцов. При этом другой торец выполнен в виде зеркала, которое отражает фотоны в активный слой. В приборе применяются дополнительные слои полупроводникового материала GaAlAs, который отличается от активного слоя показателем преломления и шириной запрещенной зоны. Это создает в активном слое оптический волновод, способствующий концентрации фотонов и усилению бегущей волны в инверсной насыщенной зарядами среде. Светоизлучающий торец СИД согласуется с волоконным световодом линзовой системой (Рис. 3).

Работа светодиодов основана на случайной рекомбинационной люминесценции избыточных носителей заряда, инжектируемых в активную область светодиода.

В результате инжекции не основных носителей заряда и дрейфа основных в активном слое происходит накопление и рекомбинация этих зарядов с выделением квантов энергии. При этом фотоны (кванты энергии),

Рисунок 1.3. Конструкция торцевого светодиода

(Ga- галлий, As – мышьяк, Al – алюминий)

Читайте так же:
Lg 42lm580t как уменьшить ток подсветки

случайно образовавшиеся, могут двигаться в любом случайном направлении, отражаться от границ различных слоев полупроводников, поглощаться кристаллами и излучаться с поверхности или из торца. Величина излучаемой мощности СИД примерно линейно зависит от величины тока инжекции.

Данная мощность больше у торцевых СИД, их еще называют СЛД – супер люминесцентными диодами.

Основные характеристики светодиодов

1. Ватт-амперная характеристика светодиодов — это зависимость излучаемой мощности от тока, протекающего через прибор (рис.4)

Рисунок 1.4 Ватт-амперные характеристики светодиодов

Характеристики имеют линейный и нелинейные участки. Нелинейность обусловлена предельными возможностями по спонтанной рекомбинации электронов и дырок и их ограниченным числом, зависящим от насыщенности примесными компонентами и общего объема активного слоя.

Ватт-амперная характеристика зависит от температуры кристалла. С ее повышением мощность излучения может значительно снижаться .

2. Спектральная характеристика светодиодов показывает зависимость излучаемой мощности от длины волны излучения (Рис. 5).

Рисунок 1. 5. Спектральные характеристики светодиодов

По спектральной характеристике можно определить ширину спектра излучения на уровне половинной от максимальной мощности излучения. Ширина спектра СЛД Δλ 1 (10 ÷ 30 нм), для поверхностного СИД Δλ 2 (30 ÷ 60 нм).

Более узкий спектр излучения СЛД объясняется волноводным эффектом и некоторой согласованностью (когерентностью) излучательных рекомбинаций.

3. Диаграмма направленности излучения светодиода показывает распределение энергии излучения в пространстве.

Рисунок 1.6. Угловая расходимость излучения

Угловая расходимость излучения оценивается на уровне уменьшения мощности в пространстве в два раза (Р max /2), что отмечено на рисунке точками на пересечении лучей и кривых распределения мощности (рис.6). Для поверхностного СИД величины φ x =φ y и могут составлять 110°. 180°. Для СЛД величины φ x и φ y не равны и примерно составляют: φ x = 60 °,

4. Внешняя квантовая эффективность светодиода показывает долю выводимой мощности излучения от полученной в результате спонтанной рекомбинации

Эта доля не превышает 2 – 10 %, что обусловлено большими потерями из-за рассеяния мощности внутри прибора и отражением фотонов на границе «полупроводник – воздух» и «полупроводник – световод» из-за различных показателей преломления полупроводника (n = 3,5) и среды (n = 1,5).

5. Срок службы и надежность. Всем светодиодам присуще деградация параметров – постепенное уменьшение мощности при длительной эксплуатации. Срок службы зависит от материала и конструкции СИД, от температуры. При увеличении температуры на 10 0 – 20 0 срок службы снижается вдвое. Для использования в системах связи срок службы СИД должен составлять 10 5 , для наземных и для подводных линий связи — 10 6 .

Полупроводниковые СИД являются приборами с низким входным сопротивлением и потребляют большой ток, поэтому для их возбуждения следует использовать низкоомные транзисторы, обеспечивающие большой ток и требуемую линейность (Рис.7).

Рисунок 1. 7. Схема включения СИД в коллекторную схему транзистора

На схеме СИД включается в коллекторную цепь транзистора. Модулирующий сигнал поступает на базу транзистора и управляет коллектором и током, являющийся одновременно током инжекции СИД. С помощью резисторов R 1 и R 2 можно подобрать необходимое значение начального тока, пробегающего через СИД.

Реальные схемы модуляции, как правило, включают цепь стабилизации режима работы и цепь обратной связи, которая уменьшает нелинейность ватт-амперной характеристики СИД.

Итак, сравнительно простая конструкция, высокая надежность, слабая зависимость от температуры делают СИД особенно подходящими для ВОСП на короткие расстояния при относительно невысокой информационной пропускной способности.

Мощность излучения светодиода от тока

Радиометрические (энергетические) характеристики светодиодов

Радиометрия занимается измерениями полного светового излучения во всех (видимом, инфракрасном и ультрафиолетовом) оптических диапазонах. Основная единица радиометрической оптической мощности — ватт (Вт). Ватт — абсолютная величина, не зависящая от длины волны. Один ватт инфракрасного света несёт такую же мощность, как один ватт видимого света. Другие измеряемые радиометрические величины — энергетическая сила излучения (Вт/ср), энергетическая освещённость (Вт/м 2 ) и энергетическая яркость (Вт/ср×м 2 ). Основной метод измерения полной оптической мощности основан на использовании сферического интегратора (см. рис. 3).

Рис. 3 — сферический интегратор
сферический интегратор
Сферический интегратор измеряет свет, испускаемый светодиодом во всех направлениях. По большому счету, эти измерения не зависят от угла свечения и не подвержены угловым погрешностям, характерным для фотометрического тестирования. Наиболее широкое применение получили сферы диаметром от 75 до 150 мм. Если критична точность измерений, то предпочтителен больший диаметр, так как немаловажным является соотношение площади сферы к размеру светодиода. Однако при измерениях светодиодов с различным пространственным распределением силы света ошибки неизбежны. Главным фактором, вносящим ошибку в измерения, является местоположение светодиода в сфере. Последняя спецификация, принятая CIE, предполагает, что корпус светодиода должен полностью находиться в сфере — это так называемое «2 π » измерение светового потока.
В ходе радиометрических измерений светодиодов должны соблюдаться те же самые предосторожности, что и при фотометрии.

Колориметрические (спектральные) характеристики светодиодов

Читайте так же:
Tp vst59s p89 уменьшить ток подсветки

Колориметрия — научное измерение и определение цветовых характеристик светодиодов. Колориметрические параметры светодиодов обычно выражены в координатах цветности или в длинах волн. Цветовое восприятие человека весьма сложно, поскольку оно зависит не только от различных физических свойств света, но также и от окружающих объектов, механических свойств излучателя, физиологического отклика глаза наблюдателя и его психологического состояния. В 1931 году Международной комиссией по освещению (CIE) были измерены реакции на цвет нескольких тысяч людей и введено понятие «стандартного наблюдателя». Реакцию такого абстрактного наблюдателя на цвета различного спектра описали через tristimulus — три кривые, названные X, Y и Z (см. рис. 4).
Система tristimulus базируется на условии, что каждый цвет — это комбинация трёх первичных цветов: красного, зелёного и синего. Диаграмма цветности CIE (см. рис. 5) получена из значений tristimulus следующим образом:
X = X / (X+Y+Z) или X = Красный / (Красный + Зелёный + Синий)
Y = Y / (X+Y+Z) или Y = Зелёный / (Красный + Зелёный + Синий)
Поскольку, (X + Y + Z) = 1, третья ось Z = 1 — (X + Y)

Рис. 4 — ординаты кривых сложения
(CIE spectral tristimulus values)
Рис. 5 — диаграмма цветности CIE (1931г)
диаграмма цветности МКО

Обычно координаты цветности определяются только осями X и Y. Но если светодиод не имеет «белого» свечения, большинство спецификаций, предоставляемых изготовителями, содержат не координаты цветности, а скорее пиковую и доминирующую длины волн. Доминирующая длина волны используется для обозначения цвета в координатах CIE и измеряется в нанометрах (нм). Это, по существу, цвет, фактически воспринимаемый человеческим глазом. Пиковая длина волны — это длина волны максимальной спектральной интенсивности. Пиковое значение легко определить, и поэтому оно является наиболее частым параметром, указываемым изготовителями светодиодов. Однако пиковая длина волны имеет меньшее практическое значения для применений в области спектра, воспринимаемой человеческим зрением: два светодиода могут иметь одинаковую пиковую длину волны, но будут оценены человеком как имеющие различные цвета.
В настоящее время самый точный метод измерения цвета — с использованием спектрорадиометра. Данное устройство регистрирует и измеряет спектральное распределение мощности источника света, после чего могут быть математически вычислены все фотометрические, радиометрические и колориметрические параметры. Точность определения оборудованием длины волны должна быть не хуже, чем 0,5 нм (желательно 0,1 нм).
Как мы уже говорили, существуют различные факторы, влияющие на полученный результат. Одним из них является температура. С повышением температуры окружающей среды увеличивается и температура активной области светодиода, соответственно увеличивается длина волны излучения светодиода. Это увеличение обычно имеет значение в пределах 0,1-0,2 нм/ºC в зависимости от типа используемого кристалла. Некоторые светодиоды, например, красного свечения, могут демонстрировать и отрицательную температурную зависимость длины волны.

Гониометрические (угловые) характеристики светодиодов

Гониометрия занимается измерением угловых характеристик светодиодов. Гониометр — устройство, измеряющее пространственное распределение силы света светодиода (см. рис. 6). Суть этого метода основана на пошаговой фиксации значений силы света светодиода при его повороте на известный угол, что может быть реализовано перемещением датчика вокруг светодиода или наклонами светодиода относительно неподвижного датчика. Несколько измерений выхода света делаются для каждого угла, при выполнении вращения от 0º до 180º. В результате мы получаем профиль излучения в одной плоскости. Так как большинство светодиодов имеет круглую форму линзы, то чаще всего диаграмма направленности излучения (индикатриса) является симметричной.

пространственное распределения силы света светодиода

Рис. 6 — диаграмма пространственного
распределения силы света

Многие производители светодиодов предоставляют именно такую диаграмму в качестве графического представления угла свечения светодиода. Но, как мы уже говорили, отклонения в геометрии и погрешности, внесённые в ходе производства светодиодов, могут существенно затронуть их оптические свойства. По-хорошему, необходимо выполнить дополнительные сканирования и сделать измерения в различных плоскостях. Кроме того, некоторые светодиоды специфических форм (овальных или эллиптических) имеют две диаграммы направленности (30º x 70º, например), поэтому необходимо как 0º, так и 90º сканирование. Если гониометр недоступен, то получить грубую диаграмму направленности возможно с использованием фотодатчика, вручную вращая светодиод или датчик, и регистрируя уровень выхода с фиксацией точки данных. Однако такой метод может быть весьма утомительным и отнимающим много времени.

Эксплуатационные характеристики светодиодов или тест на деградацию

Заключительная тема для обсуждения — основная качественная характеристика светодиодов, а именно срок их службы. Эксплуатация — это серьезно, ведь лампы перегорают… Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы — важнейший эксплуатационный параметр источников света — отражает оба этих неприятных факта: различают полный (пока прибор не перегорит) и полезный (пока световой поток не упадет ниже определённого предела) срок службы. Проектируя световое решение, нельзя забывать о дальнейшей эксплуатации осветительной установки, в частности, о замене ламп. Частая замена ламп в труднодоступных местах может превратить эксплуатацию в кошмар. Ещё более худший вариант — длительная работа установки с перегоревшими лампами, разрушающими световой образ, что очень актуально для установок наружного архитектурного освещения. Современные источники света сильно отличаются по сроку службы. Если верить сообщениям СМИ, абсолютным лидером здесь являются светодиоды: лампу накаливания пришлось бы поменять более 100 раз, а светодиоды горят и горят…
Но на самом деле это не соответствует действительности. Подавляющее большинство поставляемых сегодня промышленностью светодиодов деградирует в течение нескольких месяцев (подробнее в нашей статье о деградации светодиодов). Чтобы протестировать светодиоды на скорость деградации, необходимо следовать определённым критериям:
— поддержание стабильности режимов работы светодиодов. Прежде всего, это стабилизация тока питания, постоянство значения которого должно иметь место на протяжении всего срока тестирования;
— соблюдение температурного режима. В течение всего срока тестирования температура субстрата в местах установки светодиодов должна быть постоянной, и не превышать максимальную температуру, заявленную производителем или вычисленную исходя из тепловых свойств светодиодов;
— соблюдение всех необходимых предосторожностей при проведении измерений.

Читайте так же:
T315hw07 v 8 уменьшить ток подсветки

Из всего вышесказанного становится очевидно, что измерение света может быть очень неточным по сравнению с измерением более определённых электрических параметров (напряжение, ток, сопротивление). Существует множество факторов, таких как цвет, геометрия прибора, точность выравнивания светодиода в креплении измерительной установки, температура и т.д., которые могут привести к ошибке в измерениях. Подобные измерения всё ещё больше относятся к искусству, нежели к науке. Точность измерений ±5% в настоящее время считают стандартной и широко применимой в промышленности, но при соблюдении осторожности и должного внимания вполне реально получить ±2,5%.

Характеристики светодиодов различного назначения

Для того чтобы произвести оценку всего многообразия существующих типов твердотельных источников света попробуем сравнить характеристики светодиодов различного назначения.

Общие характеристики, которые можно применить при оценке параметров любых светоизлучающих диодов – это спектр излучения, показатели световой мощности (сила света либо световой поток), вольтамперная характеристика, электрическая мощность светодиода.

Вольтамперная характеристика всех диодов в той или иной мере идентична по своей форме, отличия состоят только в конкретных величинах токов и напряжений, поэтому на ней заострять внимание не будем.

Начнем с самых простых представителей

Стандартные индикаторные светодиоды в круглых и овальных корпусах имеют мощности порядка 20-50 мВт и различный спектр излучения, определяющийся типом используемого полупроводника для его изготовления. Типовым представителем таких светодиодов может служить круглый 5 мм АЛ307 отечественного производства.

Image 000

Его технические параметры приведены в таблице ниже.

Поскольку светодиоды индикаторного типа имеют узкий угол свечения, то для оценки используется такой параметр излучения как сила света, измеряющийся в милликанделах [мкд]. АЛ307 имеет по три градации яркости для каждого цвета. Спектр представлен четырьмя цветами.

Светодиоды в корпусах типа «пиранья» позволяют получать большие мощности за счет сниженного теплового сопротивления и отвода тепла на плату сразу через четыре вывода. Корпус «пиранья» также обрел популярность благодаря повышенной механической устойчивости – светодиоды «пиранья» с успехом применяются для изготовления автомобильного света. Практически все крупные производители имеют в своей номенклатуре семейство светодиодов в корпусе «пиранья».

Image 001

Такие светодиоды обычно называются ультраяркими или сверхяркими. Основные технические параметры светодиодов «пиранья» производства американской компании CREE приведены в таблице.

Угол свечения может быть 40˚, 70˚ или 100˚ в зависимости от модификации, определить которую поможет data sheet производителя.

Корпус «пиранья» позволяет отводить до 200 мВт мощности.

Длина волны, которая приведена в таблице для каждого цвета свечения является доминантной для данного типа светодиода. В действительности же спектр излучения, например, красного светодиода может находиться в диапазоне от 620 до 637 нм.

«Пиранья» может быть и белого свечения. Белые светодиоды изготавливаются путем нанесения желтого люминофора на синий кристалл.

Следующую группу – SMD 5050 – можно отнести уже к категории мощных светодиодов. Как видно из названия это светодиоды поверхностного монтажа с размерами 5×5 мм.

Image 002

Наименование SMD 5050 – условное, поскольку различные производители дают свое обозначение данному классу светодиодов в соответствии со сложившейся системой. Максимальная мощность достигает одного ватта. На дне корпуса такого светодиода обычно располагается специальная площадка для отведения тепла, хотя в менее мощных модификациях она может и отсутствовать.

Светодиоды SMD 5050 обычно белого цвета свечения, т.к. предназначены для изготовления светильников. Они могут монтироваться как на стеклотекстолитовую, так и на алюминиевую печатную плату. Последняя используется для лучшего отвода тепла при больших мощностях.

Белый спектр излучения подобных светодиодов имеет различные цветовые оттенки. Для них вводится такая характеристика как «коррелированная цветовая температура», которая измеряется в Кельвинах [K].

Угол свечения у них составляет 115˚.

Ниже приведены основные характеристики светоизлучающих диодов CLN6A, как одного из лучших видов в этом классе (полный список возможных исполнений достаточно велик, поэтому приведены два типовых представителя).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector