Zarya29.ru

Строительный журнал
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельные объёмное и поверхностное сопротивления твердых диэлектриков

Удельные объёмное и поверхностное сопротивления твердых диэлектриков

Рассматривая образец из твердого диэлектрика, можно выделить два принципиально возможных пути для протекания электрического тока: по поверхности данного диэлектрика и через его объем. С этой точки зрения можно оценить способность диэлектрика проводить электрический ток в данных направлениях, применив понятия поверхностного и объемного сопротивлений.

Объемное сопротивление — это сопротивление, которое проявляет диэлектрик при протекании постоянного тока через его объем.

Поверхностное сопротивление — это сопротивление, которое проявляет диэлектрик при протекании постоянного тока по его поверхности. И поверхностное, и объемное сопротивление — определяются экспериментальным путем.

Удельные объёмное и поверхностное сопротивления твердых диэлектриков

Величина удельного объемного сопротивления диэлектрика численно равна сопротивлению куба, изготовленного из данного диэлектрика, ребро которого имеет длину 1 метр, при условии протекания постоянного тока через две его противоположные грани.

Желая измерить объемное сопротивление диэлектрика, экспериментатор наклеивает на противоположные грани кубического образца диэлектрика металлические электроды.

Площадь электродов принимается равной S, а толщина образца — h. Электроды в эксперименте устанавливаются внутри охранных металлических колец, которые обязательно заземляются, чтобы устранить влияние поверхностных токов на точность проводимых измерений.

Экспериментальное определение сопротивления диэлектрика

Когда электроды и охранные кольца установлены с соблюдением всех надлежащих условий эксперимента, на электроды подают постоянное напряжение U с калиброванного источника постоянного напряжения, и выдерживают так на протяжении 3 минут, чтобы в образце диэлектрика наверняка завершились процессы поляризации.

После этого, не отключая источник постоянного напряжения, измеряют напряжение и сквозной ток при помощи вольтметра и микроамперметра. Далее рассчитывают объемное сопротивление диэлектрического образца по следующей формуле:

Объемное сопротивление

Объемное сопротивление измеряется в омах.

Поскольку площадь электродов известна, она равна S, толщина диэлектрика также известна, она равна h, и объемное сопротивление Rv только что было измерено, то теперь можно найти удельное объемное сопротивление диэлектрика (оно измеряется в Ом*м) по следующей формуле:

Удельное объемное сопротивление диэлектрика

Чтобы найти удельное поверхностное сопротивление диэлектрика, сначала находят поверхностное сопротивление конкретного образца. Для этого на образец наклеивают два металлических электрода длиной l на расстоянии d между ними.

После этого на приклеенные электроды подают постоянное напряжение U от источника постоянного напряжения, выдерживают так 3 минуты чтобы процессы поляризации в образце наверняка завершились, и измеряют напряжение при помощи вольтметра, и ток — при помощи амперметра.

Наконец, рассчитывают поверхностное сопротивление в омах по формуле:

Поверхностное сопротивление

Теперь для нахождения удельного поверхностного сопротивления диэлектрика необходимо исходить из того, что оно численно равно поверхностному сопротивлению квадратной поверхности данного материала, если ток протекает между электродами, установленными на сторонах этого квадрата. Тогда удельное поверхностное сопротивление будет равно:

Читайте так же:
Розетки для столов монтажников

Удельное поверхностное сопротивление

Удельное поверхностное сопротивление измеряется в омах.

Удельное поверхностное сопротивление диэлектрика является характеристикой диэлектрического материала и зависит от химического состава диэлектрика, его текущей температуры, влажности и от напряжения, которое приложено к его поверхности.

Сухость поверхности диэлектрика играет огромную роль. Тончайшего слоя воды на поверхности образца достаточно чтобы проявилась заметная проводимость, которая будет зависеть от толщины данного слоя.

Поверхностная проводимость в основном обусловлена наличием загрязнений, дефектов и влаги на поверхности диэлектрика. Пористые и полярные диэлектрики подвержены увлажнению больше других. Удельное поверхностное сопротивление таких материалов связано с величиной твердости и краевого угла смачивания диэлектрика.

Ниже приведена таблица, из которой очевидно, что более твердые диэлектрики с меньшим краевым углом смачивания обладают меньшим удельным поверхностным сопротивлением в увлажненном состоянии. С данной точки зрения диэлектрики подразделяются на гидрофобные и гидрофильные.

Удельное поверхностное сопротивление диэлектриков

Гидрофобными являются неполярные диэлектрики, которые при чистой поверхности не смачиваются водой. По этой причине даже если поместить такой диэлектрик во влажную среду, то его поверхностное сопротивление практически не поменяется.

Гидрофильными являются полярные и большинство ионных диэлектриков, обладающие смачиваемостью. Если поместить гидрофильный диэлектрик во влажную среду, то его поверхностное сопротивление уменьшится. Тут же ко влажной поверхности легко прилипнут разнообразные загрязнения, которые также могут способствовать снижению поверхностного сопротивления.

Есть и промежуточные диэлектрики, к ним относятся слабополярные материалы, такие как лавсан.

Если увлажненную изоляцию нагреть, то ее поверхностное сопротивление может начать расти с повышением температуры. Когда изоляция высохнет — сопротивление может уменьшится. Низкие температуры способствуют увеличению поверхностного сопротивления диэлектрика в высушенном состоянии на 6-7 порядков, если сравнивать с тем же материалом, только увлажненным.

Чтобы повысить поверхностное сопротивление диэлектрика, прибегают к разнообразным технологическим приемам. Например образец можно промыть в растворителе или в кипящей дистиллированной воде, в зависимости от вида диэлектрика, либо прогреть до достаточно высокой температуры, покрыть поверхность влагостойким лаком, глазурью, поместить в защитную оболочку, корпус и т. п.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Измерение удельного сопротивления диэлектриков

Фундаментальное свойство диэлектриков – это удельное сопротивление. Удельное сопротивление может быть использовано для определения пробоя диэлектрика, тангенса угла потерь, содержание влаги, механической целостности и других важных свойств материала. Для измерения таких больших величин сопротивления диэлектриков существуют специальные измерительные приборы – электрометры и используются они благодаря их способности измерять малые токи.

Читайте так же:
Розетки информационная с крышкой

От чего зависит удельное сопротивление?

Удельное сопротивление диэлектрика — это измерение источника известного напряжения, приложенного к образцу, измерение полученного тока и расчета сопротивления с помощью закона Ома. После измерения сопротивления, удельное сопротивление определяется на основе физических параметров испытуемого образца.

Удельное сопротивление зависит от нескольких факторов. Во-первых, оно зависит от приложенного напряжения. Иногда напряжение может изменяться умышленно, чтобы определить зависимость напряжения диэлектрика. Удельное сопротивление также варьируется в зависимости от продолжительности времени, электрификации. Чем больше напряжение, тем выше сопротивление, потому что материал продолжает заряжаться в геометрической прогрессии. Экологические факторы также влияют на удельное сопротивление диэлектрика. В общем, чем выше влажность, тем ниже сопротивление.

Для получения точных сведений теста нужно, чтобы приложенное напряжение, время электрификации и условия окружающей среды должны быть постоянными.

Удельное поверхностное сопротивление

soprotivlenie.pngПоверхностное сопротивление (Ом/квадрат) — способность пропускать электрический ток по поверхности диэлектрика — определяется как электрическое сопротивление поверхности диэлектрического материала. Измерение происходит от электрода к электроду вдоль поверхности образца диэлектрика. Так как длина поверхности фиксированная, то измерение не зависит от физических размеров (т.е. толщины и диаметра) образца диэлектрика.

Объемное удельное электрическое сопротивление

soprotivlenie1.pngОбъемное удельное сопротивление (Ом*см) — способность пропускать электрический ток через его объем — измеряется путем приложения потенциала напряжения на противоположных сторонах образца диэлектрика и измерения результирующего тока через образец.

Удельное объемное электрическое сопротивление определяется как электрическое сопротивление с помощью куба из диэлектрического материала.

Если значение выражено в Ом*см, то это измерение электрического сопротивления через 1 сантиметр куба диэлектрического материала. Если выражено в Ом*Дюйм, то это электрическое сопротивление через 1 дюйм куба изоляционного материала.

Приборы для измерения удельного сопротивления диэлектриков

om.jpgИзмерения поверхностного и объемного удельного сопротивления производятся с помощью электрометра Keithley 6517B совместно с испытательной камерой удельного сопротивления Keithley 8009.

Ниже указана ссылка, где Вы можете прочитать подробнее об измерениях удельного сопротивления при помощи электрометра Keithley 6517B >>

и тестовой оснастки (испытательной камеры удельного сопротивления) Keithley 8009 >>>

Практическая работа №1 Определение удельного объемного и удельного поверхностного сопротивления твердых диэлектриков

Определение удельного объемного и удельного поверхностного сопротивления твердых диэлектриков.

  • Научится определять удельное объемное и удельное поверхностное сопротивление диэлектриков расчетным путем.
Читайте так же:
Розетки с закрытыми дырами

Краткие теоретические сведения

По назначению электроизоляционные материалы не должны пропускать электрический ток под действием приложенного напряжения. Однако идеальных непроводников не существует, и все практически применяемые диэлектрики обнаруживают свойства электропроводности. Электропроводность диэлектриков объясняется наличием в них свободных ионов и электронов, которые могут передвигаться под воздействием электрического поля.

Проводимость изоляции Gиз (См), определяется как отношение тока утечки через изоляцию Iиз к величине приложенного постоянного напряжения :

Величина, обратная Gиз, называется сопротивлением изоляции Rиз

Различают объёмную проводимость изоляции Gv, численно определяющую проводимость через толщу изоляции, и поверхностную проводимость изоляции Gs, характеризующую наличие слоя повышенной электропроводности на поверхности раздела твёрдой изоляции с окружающей газообразной или жидкой средой; этот слой создаётся вследствие неизбежных загрязнений, увлажнения и т.п. Для газообразных и жидких диэлектриков поверхностная проводимость обычно не рассматривается

Соответственно вводятся понятия объёмного тока утечки Iv и поверхностного тока утечки Iv, а также объёмного сопротивления изоляции Rv и поверхностного сопротивления изоляции Rs

Для сравнительной оценки различных материалов в отношении их электропроводности пользуются значениями удельных объёмного ρv и поверхностного ρs сопротивлений

ρv= RvS/h ,

где Rv – объёмное сопротивление образца, Ом

S — площадь электрода, м 2

h — толщина образца, м

ρs= Rsb/a ,

где Rs – поверхностное сопротивление образца материала, Ом

b — длина электродов на поверхности диэлектрика, см

a — расстояние между электродами на поверхности диэлектрика, см.

Удельное сопротивление диэлектрика является параметром, определяющим ток утечки в нем. Токи утечки в диэлектрике обуславливают потери мощности, как и в проводнике: это так называемая мощность диэлектрических потерь при постоянном токе, определяемая по формуле

Р = UIиз.

При подсчете диэлектрических потерь, ведущих к нагреву диэлектрика, обычно учитывается только объемный ток утечки. Поверхностный ток утечки создает потери мощности на поверхности. Рассеяние энергии происходит при этом в основном в окружающую среду, на нагрев диэлектрика поверхностная утечка в большинстве случаев не влияет.

Удельное сопротивление твердых диэлектриков зависит от многих факторов: температуры, влажности, приложенного напряжения и напряженности электрического поля.

При повышении температуры удельное сопротивление электроизоляционных материалов, как правило, существенно уменьшается. Иными словами, температурные коэффициенты удельных сопротивлений электроизоляционных материалов отрицательны.

Присутствие даже малых количеств воды способно значительно уменьшить удельное сопротивление диэлектриков. Это объясняется тем, что растворимые в воде примеси диссоциируют на ионы; в некоторых случаях влияние увлажнения может способствовать диссоциации молекул основного вещества диэлектрика. Таким образом, условия работы электрической изоляции становятся более тяжелыми при увлажнении.

Читайте так же:
Шлейфовое соединение розеток по пуэ

С повышением приложенного к изоляции напряжения сопротивление изоляции может уменьшаться. Зависимость Rиз от напряжения объясняется рядом причин: образованием в изоляции объемных электрических зарядов, плохим контактом между электродами и изоляцией; изменением под действием электрического поля формы и размеров включений влаги и др.

  1. Изучить краткие теоретические сведения.
  2. Для заданного преподавателем варианта решить задачи, по определению сопротивлений диэлектриков.
  3. Ответить на контрольные вопросы.

Напряженность поля, при которой происходит пробой диэлектрика, называют электрической прочностью диэлектрика Епр, а напряжение при пробое — пробивным напря­жением Uпр, причем

Eпр=Uпр/h

где h — толщина диэлектрика.

Емкость конденсатора зависит от геометрических раз­меров, формы, взаимного расположения и расстояния между обкладками, а также от свойств диэлектрика. Емкость плоского конденсатора

C=εεS/ h

где S — площадь пластины, м 2 ; h — расстояние между пластинами, м.

Напряженность электрического поля плоского конден­сатора

E=U/h

где U — напряжение, приложенное к зажимам конденса­тора, В.

Удельное объёмное ρv сопротивление

ρv= RvS/h ,

где Rv – объёмное сопротивление диэлектрика, Ом; S — площадь пластины, м 2

h — толщина диэлетрика, м

Удельное поверхностное ρs сопротивление

ρs= Rsp/h ,

где Rs – поверхностное сопротивление, Ом; p – периметр пластины, между которыми находится диэлектрик, м; h — толщина диэлектрика, м

Объемный ток в диэлектрике как найти

Ток, проходящий через электрическую изоляцию в установившемся режиме (после достаточно продолжительного промежутка времени после приложения напряжения), является постоянным и называется сквозным током утечки. Величина сопротивления изоляции R из равна отношению приложенного напряжения U , В к сквозному току утечки I из, А:

Величина проводимости изоляции G из является обратной к R из:

Различают объемное сопротивление электрической изоляции, равное сопротивлению через толщу материала, и поверхностное сопротивление, которое определяется наличием загрязнений (влага, растворы солей, кислот), нарушениями структуры поверхности, поскольку поверхность диэлектрика в большей степени подвержена воздействию внешних факторов. Соответственно, различают и токи утечки – на объемный и поверхностный (рис. 1).

Рис. 1. Объемный Iv и поверхностный Is токи утечки через образец изоляции.

Порядок величины токов составляет очень малые величины до 10 -15 и даже до 10 -17 А . Поэтому особое внимание при проведении измерений уделяют устранению паразитных токов утечки, которые могут существенно повлиять на точность получаемых результатов.

Для исключения поверхностного тока утечки при измерении объемного электрического сопротивления диэлектриков применяют специальное охранное кольцо, окружающее измерительный электрод. При этом потенциал охранного кольца равен потенциалу измерительного электрода, именно в этом случае ток утечки между ними будет отсутствовать (рис. 2).

Читайте так же:
Розетка с разноцветной рамкой

Рис. 2. Расположение концентрических электродов при измерении объемного сопротивления диэлектрика.

1 — охранное кольцо; 2- центральный электрод; 3- нижний электрод.

Для измерений применяют напыленные или фольговые электроды, которые вырезают из оловянной или отожженной алюминиевой фольги толщиной 5– 20 мкм. Контакт фольгового электрода с образцом создается путем притирания с помощью тонкого слоя вазелина, трансформаторного, конденсаторного или вазелинового масла, кремнийорганической жидкости или другого аналогичного вещества. Толщина смазки не должна превышать 1 мкм.

Тогда удельное объемное сопротивление материала может быть рассчитано по формуле:

где IV – измеряемый объемный ток; U – напряжение на электродах; S – площадь центрального измерительного электрода; h – толщина диэлектрика; RV – объемное сопротивление образца.

При измерении поверхностного электрического сопротивления диэлектрика при данной системе электродов напряжение прикладывается между охранным кольцом и центральным электродом.

В такой системе удельное поверхностное сопротивление может быть рассчитано по формуле:

где RS – поверхностное электрическое сопротивление образца диэлектрика, заключенного между электродами; d 1 – внутренний диаметр охранного кольца; d 2 – диаметр центрального электрода.

Удельное объемное сопротивление имеет размерность [Ом × м], а удельное поверхностное – [Ом]. Это разные физические величины, которые нельзя сравнивать друг с другом.

При измерении сопротивления электрической изоляции следует учесть, что в первый момент времени выдержки под напряжением через нее протекает не только сквозной электрический ток, но и сопровождающий его ток абсорбции (смещения), связанный с установлением замедленных видов поляризации (рис. 3).

Электропроводность диэлектрика определяется при постоянном напряжении по величине сквозного тока, значение сопротивления образца вычисляется по формуле: R из = U / I из = U / ( IΣ – I абс ), где I из – сквозной ток утечки, IΣ – суммарное значение тока, I абс – ток абсорбции.

Следовательно, если измерить сопротивление изоляции в первый же момент приложения напряжения, то можно получить его завышенное значение.

В связи с тем, что величины токов абсорбции очень малы, измерять их крайне сложно. Поэтому сопротивление изоляции принято измерять после 1 минуты выдержки образца под постоянным напряжением. Считается, что за это время поляризационные процессы, вносящие основной вклад в ток абсорбции диэлектрика, закончатся.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector